

28 January 2025

ASX ANNOUNCEMENT

Drill Results at Hatches Creek Significant Tungsten and Copper Mineralisation

Highlights

- Exploration drilling program testing targets at Hatches Creek successfully completed with a total of **65 holes for 6,803 metres drilled.** Drilling identified significant tungsten and copper mineralisation at Hit or Miss, Treasure, Green Diamond, Black Diamond and Bonanza prospects.
- Extensional drilling at Hit or Miss confirmed continuity of high-grade tungsten mineralisation from 320 metres to 600 metres. Better intersections include 17 metres at 0.43% WO₃ and 5 metres at 0.94% WO₃, 7 metres at 0.38% WO₃ and 5 metres at 0.44% WO₃.
- Infill drilling at Treasure confirmed continuity of high-grade tungsten mineralisation over 350 metres of strike. Better intersections included **5 metres at 2.05 % WO₃**, **7 metres at 1.39% WO₃**, **15 metres at 0.44% WO₃**.
- Drilling at Green Diamond intersected multiple zones of tungsten-copper mineralisation over 300 metres of strike that remains **open to the west, east and down dip**. Three styles of mineralisation are present:
 - \circ Narrow, high-grade zones hosted by sediments including 4 metres at 1.45 % WO₃, 4 metres at 1.13% WO₃ and 2 metres at 1.84% WO₃ and 0.62% Cu.
 - Substantial thick zones of low to medium grade tungsten-copper mineralisation associated with the Pedlar Gabbro/Sediment contact including 37 metres at 0.14 % WO₃ and 0.30% Cu, 26 metres at 0.12% WO₃ and 0.21% Cu and 19 metres at 0.11% WO₃ and 0.40% Cu.
 - A single high-grade copper intersect that assayed **3 metres at 6.30% Cu** from 68 metres.
- Drilling at Black Diamond intersected multiple mineralised structures over 200 metres of strike. Mineralisation is open to the west, east and down dip. Better intersections included 6 metres at 0.36 % WO₃, and 3 metres at 0.81% WO₃.
- Drilling at Bonanza intersected multiple mineralised structures over 160 metres and is **open to the west**, **east and down dip.** Better intersections included **5 metres at 1.51% WO**₃, **8 metres at 0.82 % WO**₃ and **6 metres at 0.81% WO**₃.
- A Maiden Mineral Resource estimate for Hatches Creek is planned to be completed in the March Quarter.
- Soil sampling demonstrated excellent potential to define new mineralised zones.

Tungsten Mining's chairman Gary Lyons commented

"We are pleased to announce these encouraging drilling results at our Hatches Creek Project that have identified significant tungsten and copper mineralisation."

"The maiden Mineral Resource Estimate is underway, which hopefully will add value and propel the Hatches Creek Project towards development."

T +61 8 9486 8492 F +61 8 6117 4039

Level 4, 46 Colin Street, West Perth WA 6005 Australia PO Box 452, West Perth WA 6872 Australia info@tungstenmining.com tungstenmining.com AN AUSTRALIAN BASED RESOURCES COMPANY

Background

Australian tungsten developer, Tungsten Mining NL (ASX: TGN) ("TGN" or "the Company") is pleased to report on the results from drilling at the Hatches Creek Project. Between the 31 August to 6 October 2024, the Company completed 65 reverse circulation drill holes totalling 6,803 metres, testing five targets at the Hatches Creek Project (Figure 1).

The objective of the drilling was to test extensions to and confirm continuity of tungsten mineralisation identified by previous reverse circulation (RC) drilling programs completed by the GWR Group Limited (ASX: GWR) (GWR) in 2016 to 2019.¹

The recent drilling tested five targets and intersected significant tungsten mineralisation at all five targets. Drilling at Hit or Miss, Treasure and Green Diamond also intersected broad zones of highly anomalous copper mineralisation.

Refer to GWR ASX announcements between 2016 and 2019 for GWR's drilling results.¹

RC drilling at Hatches Creek in September 2024

Hit or Miss

In 2016 to 2019, GWR conducted drilling which intersected significant tungsten-copper mineralisation associated with multiple mineralised structures over a width of 250 metres and strike length of 240 metres. Mineralisation was open to the north and south. Historic workings extend 160 metres north and 130 metres south of GWRs drill holes.

Mineralisation at Hit or Miss is associated with a series of parallel north to northwest striking quartz lodes that dip steeply towards the west. Quartz lodes are hosted by dominantly felsic volcanic rocks and are accompanied by widespread copper mineralisation.

In the September 2024 quarter, the Company drilled 35 RC holes for 3,487 metres to test strike extensions to known mineralisation at Hit or Miss (Figure 2). Drilling intersected significant tungsten mineralisation on the southern (Figure 3), northern and eastern (Figure 4) strike extensions. Better intersections included the following:

- 7 metres at 0.38% WO₃ from 25 metres in HCRC067, 5 metres at 0.44% WO₃ from 12 metre in HCRC079 and 6 metres at 0.32% WO₃ from 76 metres in HCRC076 associated with the southern strike extension,
- **17 metres at 0.43% WO₃ from 1 metre** in HCRC078 and **5 metres at 0.94% WO₃ from 34 metres** in HCRC077 associated with the eastern strike extension,
- 14 metres at 0.12% WO₃ from 28 metres in HCRC092 and 20 metres at 0.09% WO₃ from 2 metres and 6 metres at 0.11% WO₃ from 25 metres in HCRC097 associated with the northern strike extension

Better tungsten intersections are listed in Table 1. For a complete list of intersections refer to Appendix 1.

Table 1 – Better tungsten intersections from Hit or Miss

		Hit or Miss	B Drilling - Si	ignificant Tung	gsten Minera	lisation (>0.	05% WO₃)		
		MGA Coor	dinates				Intersectio	ns	
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Cu (%)
HCRC067	519,457	7,685,578	100	-60/90	25	32	7	0.38	0.19
HCRC070	519,583	7,685,500	100	-60/90	59	61	2	1.26	0.02
HCRC071	519,541	7,685,499	100	-60/90	29	32	3	1.14	0.10
				Including	29	31	2	1.68	0.13
HCRC077	519,741	7,685,743	100	-60/90	11	14	3	0.94	0.09
				Including	11	12	1	2.67	0.15
					34	39	5	0.94	0.23
				Including	34	35	1	4.31	0.30
HCRC078	519,700	7,685,739	100	-60/90	1	18	17	0.43	0.03
				Including	3	4	1	1.59	0.04
				Including	5	6	1	3.91	0.08
HCRC079	519,502	7,685,581	100	-60/90	12	17	5	0.44	0.04
				Including	15	16	1	1.93	0.09
					94	99	5	0.70	0.02
				Including	96	97	1	1.37	0.02
				Including	98	99	1	1.79	0.02
HCRC081	519,606	7,685,583	100	-60/90	8	13	5	0.39	0.13
				Including	12	13	1	1.03	0.37
HCRC091	519,449	7,685,879	100	-60/90	70	79	9	0.53	0.01
				Including	71	72	1	2.32	0.01
					86	92	6	0.28	0.02
HCRC092	519,581	7,685,961	100	-60/90	28	42	14	0.12	0.13
HCRC096	519,560	7,685,882	100	-89/251	6	15	9	0.35	0.05
				Including	11	13	2	1.29	0.08
					18	36	18	0.11	0.10

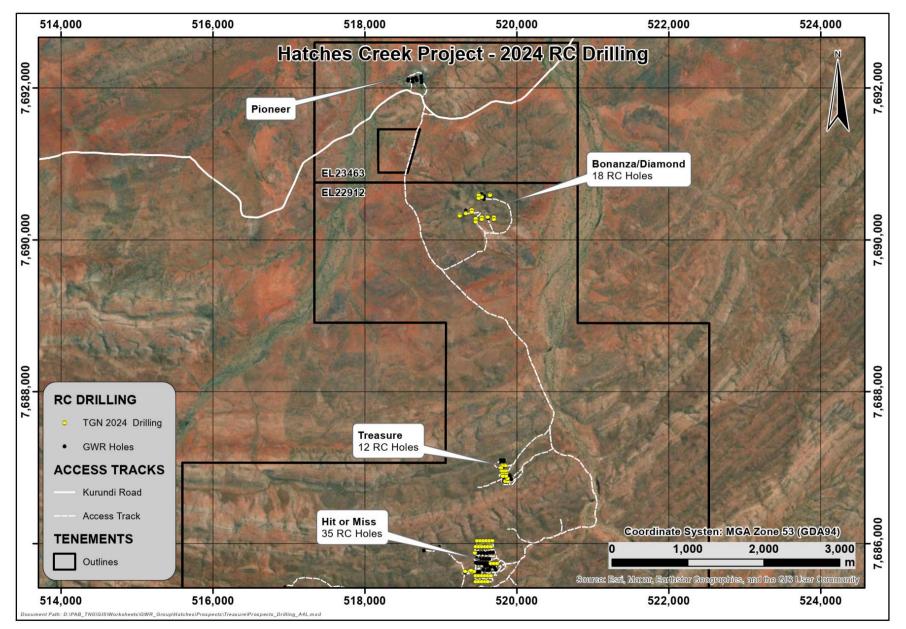


Figure 1. Plan to show the location of recent 2024 RC drilling.

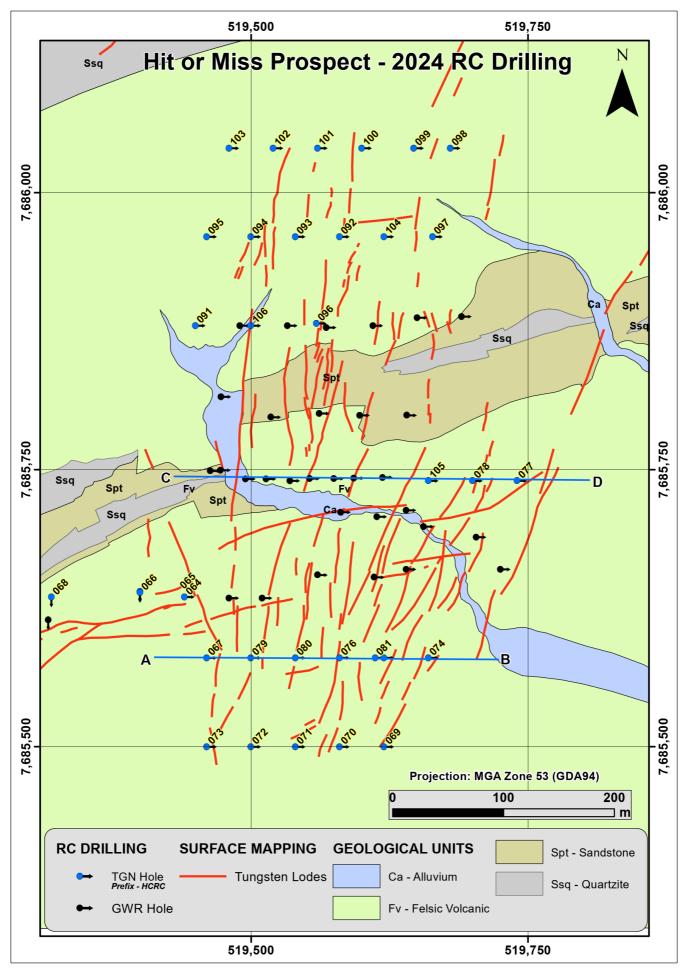


Figure 2. Plan showing 2024 RC drilling and location of sections A-B and C-D at Hit or Miss.

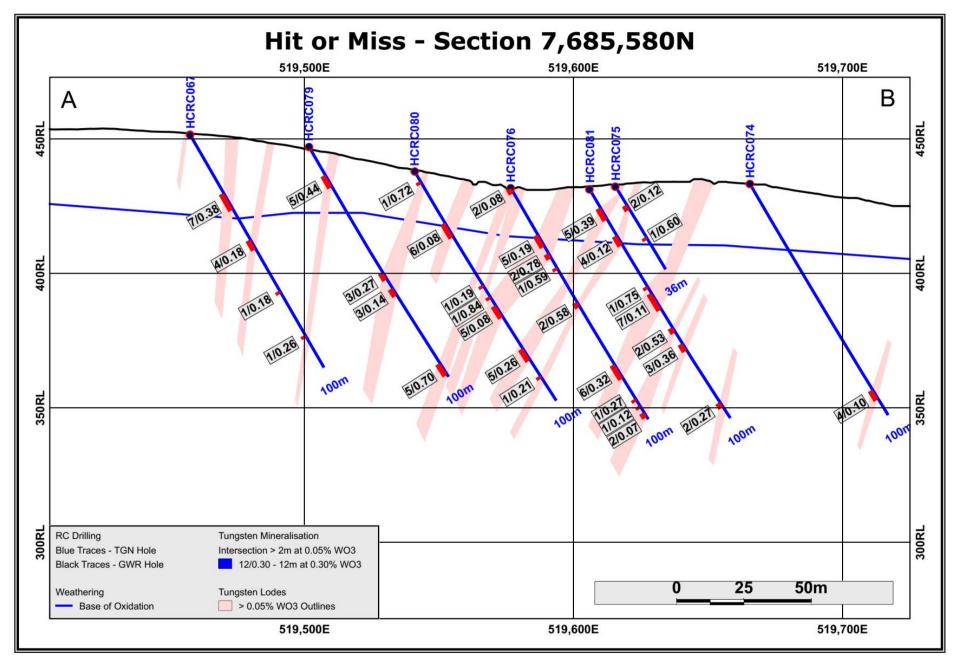


Figure 3. Section A-B showing significant tungsten mineralisation intersected by recent RC drilling on the southern strike extension at Hit or Miss.

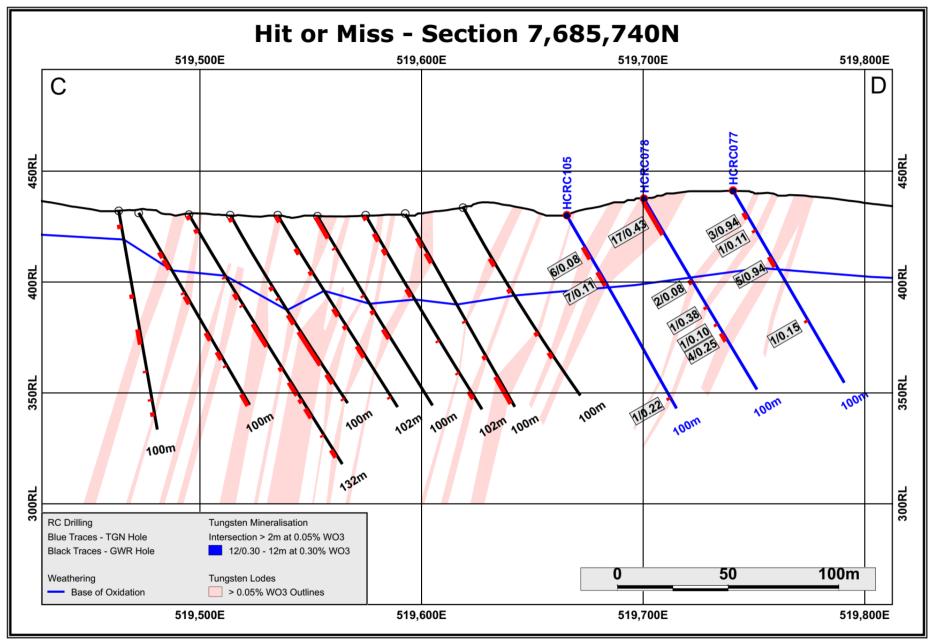


Figure 4. Section C-D showing significant tungsten mineralisation intersected by recent RC drilling on the eastern strike extension at Hit or Miss.

Treasure

In 2016 and 2017, GWR drilled 12 RC holes at Treasure intersecting significant tungsten mineralisation over 350 metres of strike. Mineralisation in the southern half of the prospect is associated with multiple north striking quartz lodes within a 30 to 50 metre wide zone. Tungsten mineralisation in the southern zone is also accompanied by low grade copper mineralisation. Tungsten mineralisation in the northern half of the prospect is associated with a single high-grade zone dipping steeply towards the west. Mineralisation is hosted by felsic volcanic units.

In the September 2024 quarter the Company drilled 12 RC holes for 1,242 metres to confirm continuity of tungsten mineralisation present at Treasure (Figure 5). Drilling intersected significant tungsten mineralisation at target depths (Figure 6) and confirmed continuity of mineralised structures over 350 metres of strike. Intersections included the following:

- 5 metres at 2.05 % WO₃ from 71 metres in HCRC085,
- 7 metres at 1.39% WO3 from 88 metres in HCRC086,
- 15 metres at 0.44% WO3 from 103 metres in HCRC110,
- 9 metres at 0.67% WO₃ from 131 metres in HCRC083

Better tungsten intersections are listed in Table 2. For a complete list of intersections refer to Appendix 1.

Table 2 – Better tungsten intersections from Treasure

		Treasure	e Drilling - S	ignificant Tungs	ten Mineralis	sation (>0.0	5% WO ₃)		
		MGA Coo	ordinates				Intersection	าร	
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Cu (%)
HCRC082	519,842	7,686,964	120	-60/90	8	17	9	0.31	0.09
HCRC082				Including	10	11	1	1.33	0.08
HCRC082					55	64	9	0.15	0.62
HCRC083	519,806	7,686,956	150	-60/90	101	111	10	0.28	0.02
HCRC083					131	140	9	0.67	0.15
HCRC083				Including	131	132	1	4.49	0.21
HCRC085	519,809	7,687,036	140	-60/90	71	76	5	2.05	0.01
HCRC085				Including	74	75	1	9.37	0.01
HCRC085					126	129	3	0.49	0.08
HCRC085				Including	126	127	1	1.09	0.16
HCRC086	519,796	7,686,997	170	-60/90	88	95	7	1.39	0.01
HCRC086				Including	88	89	1	9.09	0.01
HCRC086					114	117	3	0.89	0.01
HCRC086				Including	114	115	1	2.35	0.01
HCRC086					136	140	4	0.45	0.29
HCRC108	519,882	7,686,854	80	-60/90	6	24	18	0.21	0.06
HCRC110	519,820	7,686,893	140	-60/90	84	97	13	0.16	0.07
HCRC110				1 1	103	118	15	0.44	0.18
HCRC110				Including	111	114	3	1.81	0.30
HCRC111	519,858	7,686,881	100	-59/67	14	26	12	0.19	0.08

1m cone split RC samples were submitted to Nagrom the Mineral Processors, Kelmscott WA for WO₃ and Cu by XRF. Lower cut-off grade of 0.05% WO₃, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 53.

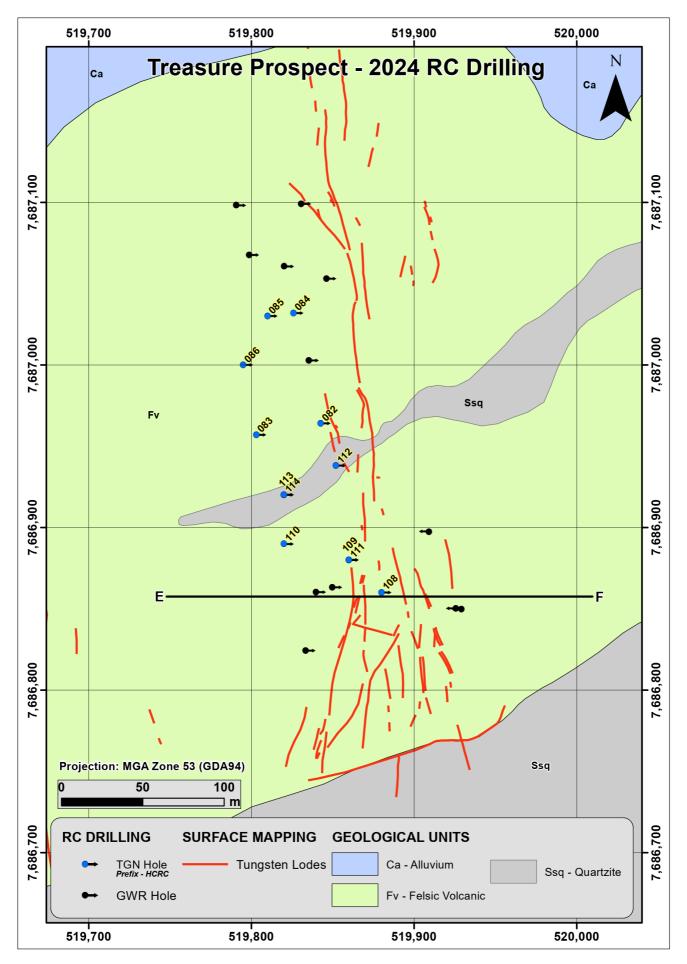


Figure 5. Plan showing 2024 RC drilling and location of section E-F at Treasure.

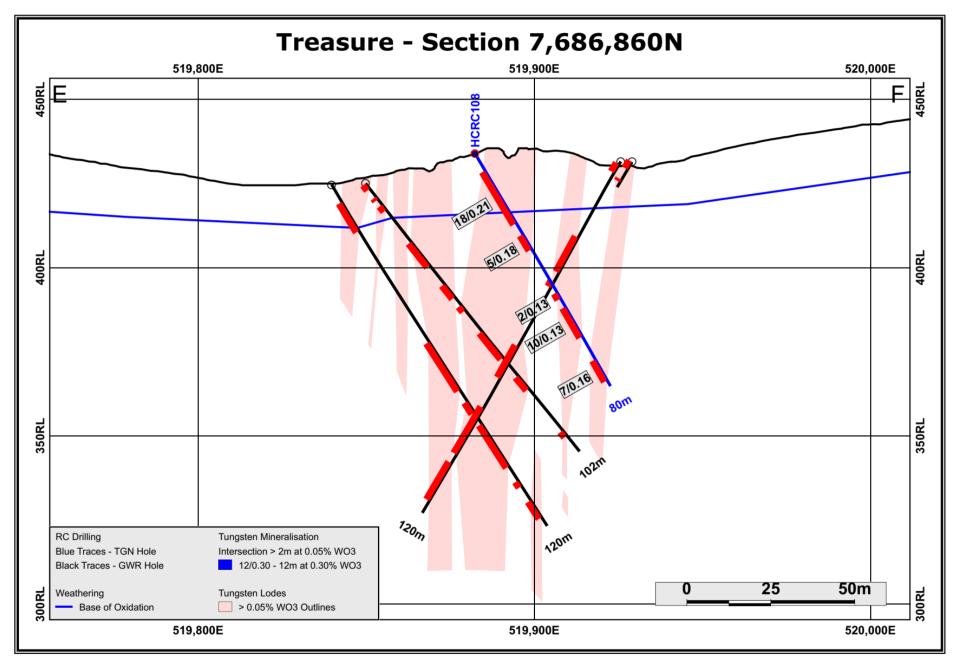


Figure 6. Section E-F showing significant tungsten mineralisation intersected by recent RC drilling at Treasure.

Green Diamond

In 2017, GWR drilled one RC hole at Green Diamond intersecting multiple zones of tungsten mineralisation in a 100 metre-wide corridor. Better intersections included 4 metres at 0.42% WO₃ from 0 metre, 4 metres at 0.37% WO₃ from 59 metres and 6 metres at 0.90% WO₃ from 90 metres. Mineralisation is associated with multiple east-west striking quartz lodes hosted by fine grained sediments that dip steeply towards the south $(60 - 70^{\circ})$ and are targeted by historic working over a strike length of 450 metres.

In September/October 2024, the Company drilled 7 RC holes (HCRC115 – HCRC119, HCRC151 – HCRC152) for 834 metres to test strike extension at Green Diamond (Figure 7). Drilling intersected significant mineralisation over 300 metres of strike that is **open to the west, east and down dip**. Three styles of mineralisation are present:

The first style of mineralisation is narrow high-grade zones hosted by fine grained sediments dipping steeply towards the south (Figure 9). Intersections from this style of mineralisation included the following:

- 4 metres at 1.45 % WO3 and 0.16% Cu from 54 metres in HCRC152,
- 4 metres at 1.13% WO3 and 0.02% Cu from 80 metres in HCRC116,
- 2 metres at 1.84% WO₃ and 0.62% Cu from 44 metres in HCRC115,
- 4 metres at 0.54% WO₃ and 0.01% Cu from 93 metres in HCRC151.

The second style is broad zones of low to medium grade tungsten-copper mineralisation associated with the Pedlar Gabbro/sediment contact with a shallower (25 - 40°) southerly dip (Figure 8). Intersections from this style of mineralisation included the following:

- 37 metres at 0.14 % WO₃ and 0.30% Cu from 0 metre including 19 metres at 0.20% WO₃ and 0.34% Cu from 15 metre in HCRC116,
- 26 metres at 0.12% WO3 and 0.21% Cu from 0 metre in HCRC151,
- 19 metres at 0.11% WO3 and 0.40% Cu from 0 metre in HCRC152,
- 20 metres at 0.10% WO3 and 0.31% Cu from 0 metre in HCRC117.

The third style is a single intersection of high-grade copper mineralisation associated fine grained sediment that assayed **5 metres** at **3.86% Cu** from 68 metres including **3 metres at 6.30% Cu** (>1.0% Cu) from 68 metres in HCRC116. The geometry of this zone is unknown.

Better tungsten intersections are listed in Table 3. For a complete list of intersections refer to Appendix 1.

Table 3 – Better tungsten intersections from Green Diamond

				- Significant Tu		(
		MGA Coo	ordinates	Т			Intersection	IS	
Hole No	Northing	Easting	Depth	Dip/	From	То	Interval	WO ₃	Cu
	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(%)
HCRC115	519,620	7,690,296	100	-50/0	24	26	2	1.33	0.12
HCRC115					44	46	2	1.84	0.62
HCRC115				Including	44	45	1	3.12	0.81
HCRC116	519,537	7,690,270	150	-59/0	0	37	37	0.14	0.30
HCRC116					80	84	4	1.13	0.02
HCRC116				Including	80	82	2	2.14	0.02
HCRC117	519,537	7,690,298	100	-59/0	0	20	20	0.10	0.31
HCRC151	519,459	7,690,239	160	-60/0	0	26	26	0.12	0.21
HCRC151					93	97	4	0.54	0.01
HCRC151				Including	94	95	1	1.22	0.01
HCRC152	519,463	7,690,283	120	-60/0	0	19	19	0.11	0.40
HCRC152					54	58	4	1.45	0.16
HCRC152				Including	55	56	1	5.54	0.20
HCRC152				1	84	87	3	0.52	0.20
HCRC152				Including	84	85	1	1.37	0.38

1m cone split RC samples were submitted to Nagrom the Mineral Processors, Kelmscott WA for WO_3 and Cu by XRF. Lower cut-off grade of 0.05% WO_3 , no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 53.

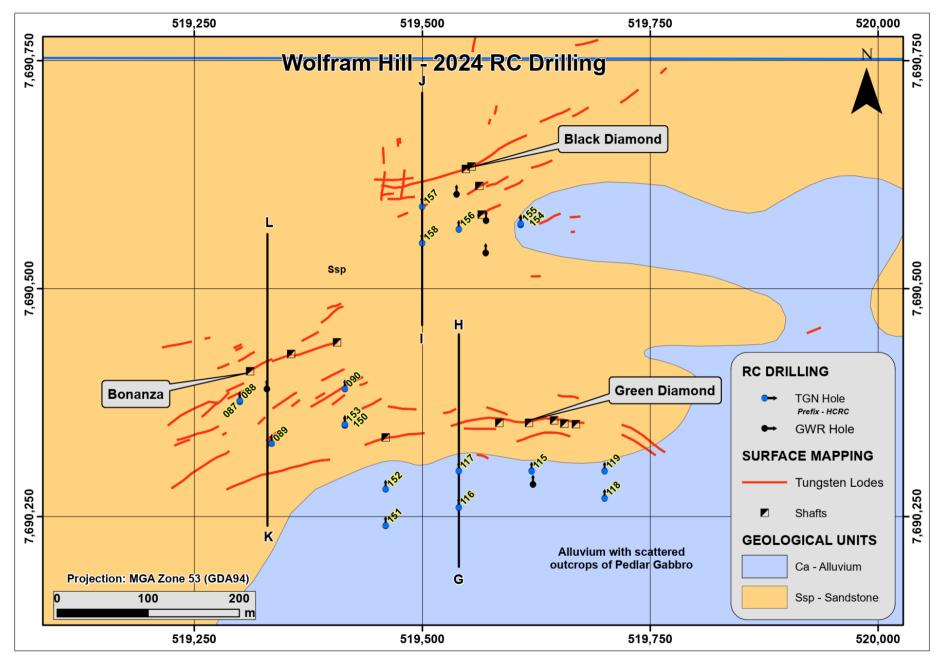


Figure 7. Plan showing 2024 RC drilling at Green Diamond, Black Diamond and Bonanza plus the locations of section G-H, I-J and K-L.

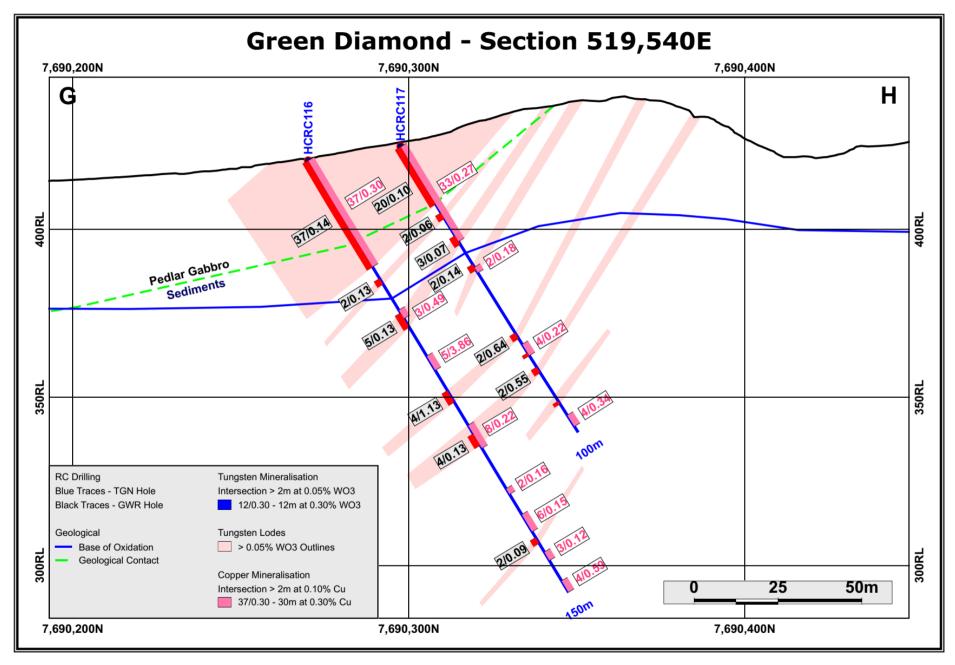


Figure 8. Section G-H showing significant tungsten-copper mineralisation intersected by recent RC drilling at Green Diamond.

Black Diamond

In 2017, GWR drilled three RC hole at Black Diamond to test the Main Lode, Number 3 Lode and South Lode hosted by fine grained sediments. Drilling intersected significant tungsten mineralisation at target depths including **11 metres at 0.44% WO**₃ from 29 metre, **16 metres at 0.18% WO**₃ from 5 metre, and 2 metres at 0.95% WO₃ from 60 metre. Mineralisation is associated with multiple east-northeast striking quartz lodes that dip steeply towards the south ($60 - 80^{\circ}$) and are targeted by historic working over a strike length of 250 metres.

In October 2024 the Company drilled 5 RC holes (HCRC154 – HCRC158) for 580 metres to test strike extension at Black Diamond (Figure 7). Drilling intersected fine-grained sediments and two 10 - 20 metre thick mafic intrusive units that dip shallowly towards the south. Stronger tungsten mineralisation was intersected in sediments adjacent to or within the mafic units (Figure 9) over a strike length of 200 metres. Mineralisation remains **open to the west, east and down dip**. Better intersections included the following:

- 14 metres at 0.14% WO3 from 0 metre in HCRC154,
- 3 metres at 0.81% WO₃ from 104 metres in HCRC155,
- 6 metres at 0.36% WO3 from 23 metres in HCRC157,
- 4 metres at 0.59% WO₃ from 50 metres in HCRC158.

Better tungsten intersections are listed in Table 4. For a complete list of intersections refer to Appendix 1.

Table 4 – Better tungsten intersections from Black Diamond

		Black Diam	ond Drilling	- Significant Tu	ngsten Miner	alisation (>	0.05% WO₃)		
		MGA Coo	ordinates				Intersection	ıs	
Hole No	Northing	Easting	Depth	Dip/	From	То	Interval	WO ₃	Cu
	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(%)
HCRC154	519,608	7,690,562	140	-70/0	0	14	14	0.14	0.08
HCRC155	519,608	7,690,563	140	-50/0	0	10	10	0.10	0.03
HCRC155					104	107	3	0.81	0.07
HCRC155				Including	105	106	1	2.26	0.09
HCRC156	519,540	7,690,565	110	-60/0	0	15	15	0.12	0.08
HCRC156					20	28	8	0.13	0.02
HCRC157	519,505	7,690,580	80	-60/0	0	10	10	0.10	0.05
HCRC157					23	29	6	0.36	0.07
HCRC157				Including	23	24	1	1.00	0.11
HCRC158	519,495	7,690,549	110	-60/0	0	9	9	0.15	0.07
HCRC158					12	15	3	0.38	0.04
HCRC158					35	42	7	0.22	0.16
HCRC158					50	54	4	0.59	0.01
HCRC158				Including	53	54	1	1.90	0.01

1m cone split RC samples were submitted to Nagrom the Mineral Processors, Kelmscott WA for WO_3 and Cu by XRF. Lower cut-off grade of 0.05% WO_3 , no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 53.

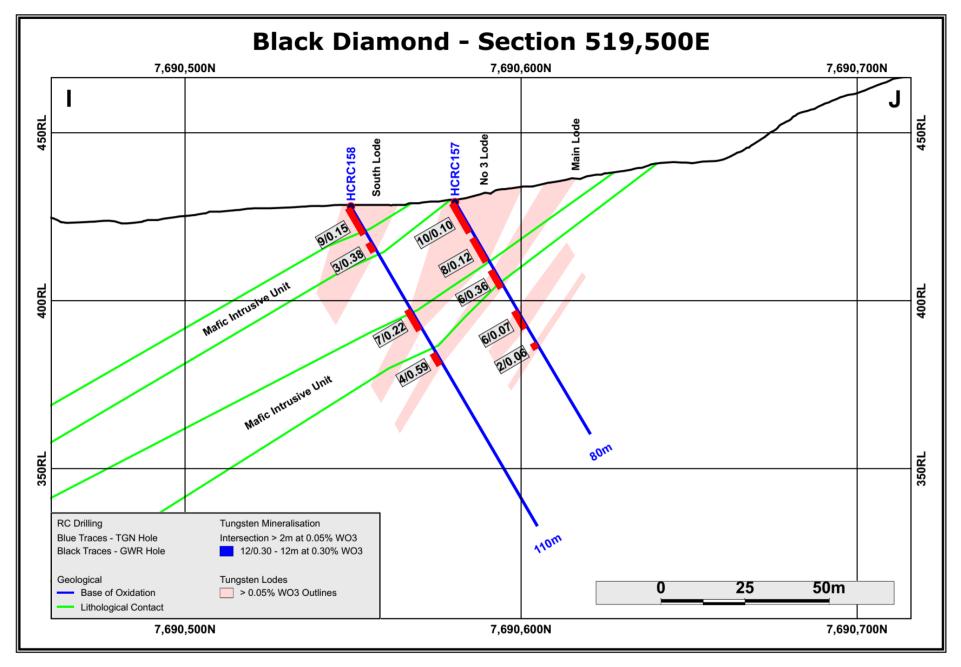


Figure 9. Section I-J showing significant tungsten mineralisation intersected by recent RC drilling at Black Diamond.

Bonanza

In 2017, GWR drilled one RC hole at Bonanza to test the Main Lode that is associated with east-northeast strike quartz veins hosted by fine grained sediments. Drilling intersected significant tungsten mineralisation at target depths including **6 metres at 0.42 % WO**₃ from 32 metres and 6 metres at 0.49 % WO₃ from 41 metres associated with the Main Lode. A second parallel structure was intersected assaying 5 metres at 0.10 % WO₃ from 6 metres. GWR drilling did not test multiple parallel structures south of the Main Lode defined by historic working that targeted quartz lodes dipping steeply towards the south (60 – 80°). Historic workings are present over 230 metres of strike.

In September/October 2024, the Company drilled 6 RC holes (HCRC087 – HCRC090, HCRC150, HCRC153) for 660 metres to test strike extensions at Bonanza (Figure 7). Drilling intersected multiple mineralised structures over 160 metres of strike that dip steeply towards the south (Figure 10) and are **open to the west, east and down dip**. Better intersections included the following:

- 5 metres at 1.51% WO₃ from 109 metres in HCRC089,
- 8 metres at 0.82% WO₃ from 32 metre in HCRC087,
- 6 metres at 0.81% WO3 from 19 metres in HCRC088,
- 6 metres at 0.60% WO₃ from 49 metre in HCRC088.

Better tungsten intersections are listed in Table 5. For a complete list of intersections refer to Appendix 1.

Table 5 – Better tungsten intersections from Bonanza

		Bonanza	a Drilling - Si	gnificant Tungs	ten Mineralis	ation (>0.05	% WO ₃)		
		MGA Coo	ordinates				Intersectio	ns	
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ (%)	Cu (%)
HCRC087	519,304	7,690,378	120	-75/0	32	40	8	0.82	0.01
HCRC087				Including	34	35	1	6.13	0.02
HCRC088	519,304	7,690,379	80	-50/0	19	25	6	0.81	0.01
HCRC088				Including	21	22	1	3.92	0.01
HCRC088					49	55	6	0.60	0.02
HCRC088				Including	50	51	1	3.34	0.03
HCRC089	519,337	7,690,325	170	-60/0	57	63	6	0.28	0.16
HCRC089				Including	57	58	1	1.20	0.05
HCRC089					83	85	2	1.01	0.04
HCRC089				Including	83	84	1	1.79	0.04
HCRC089					96	98	2	1.12	0.11
HCRC089				Including	97	98	1	1.82	0.02
HCRC089					109	114	5	1.51	0.20
HCRC089				Including	111	112	1	7.18	0.18
HCRC089					149	159	10	0.11	0.02
HCRC153	519,412	7,690,346	160	-50/0	4	13	9	0.11	0.00
HCRC153					21	23	2	1.03	0.01
HCRC153				Including	22	23	1	1.96	0.01

1m cone split RC samples were submitted to Nagrom the Mineral Processors, Kelmscott WA for WO₃ and Cu by XRF. Lower cut-off grade of 0.05% WO₃, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 53.

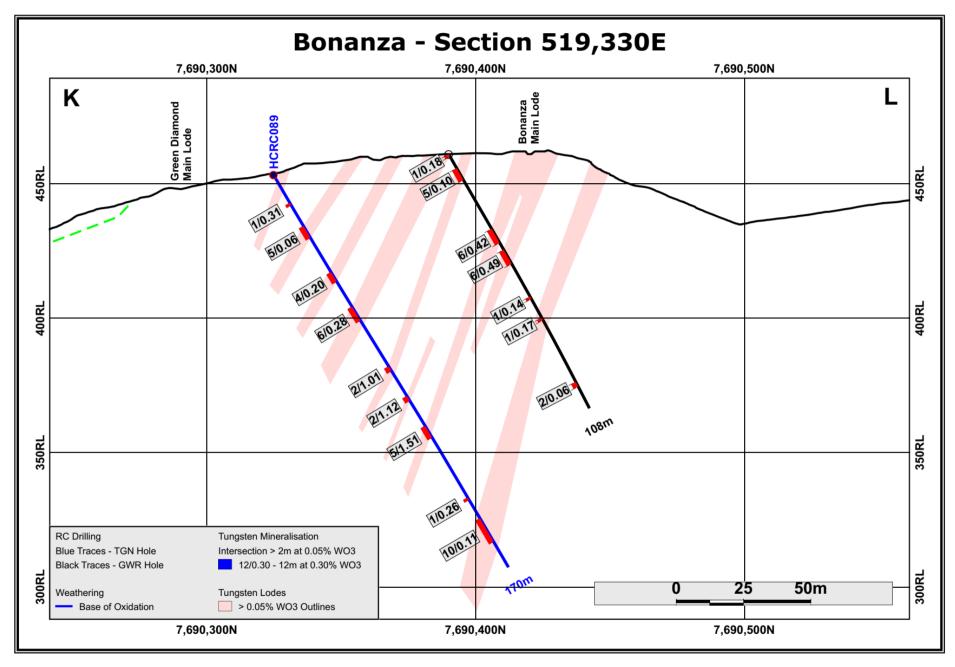


Figure 10. Section K-L showing significant tungsten mineralisation intersected by recent RC drilling at Bonanza.

Soil Geochemistry

In June 2024, the Company collected 171 soil samples across the Green Diamond, Black Diamond and Bonanza workings that are present on Wolfram Hill. Sampling defined a number of strong coincident tungsten-copper-molybdenum-bismuth soil anomalies demonstrating excellent potential to define new mineralised zones (Figure 11). Targets are as follows:

- 650-metre long soil anomalies associated with the Pedlar Gabro/Sediment contact where drilling at Green Diamond intersected up to 37 metres at 0.14 % WO₃ and 0.30% Cu from 0 metre in HCRC116. This mineralisation was not targeted by historic workings and is open to the west, east and down dip.
- 700-metre long strong soil anomalies associated with the Bonanza-Black Diamond trend. Mineralisation in drilling at Bonanza/Black Diamond is open to the west, east and down dip.
- A third 300-metre-long strong soil anomalies between Green Diamond and Black Diamond.

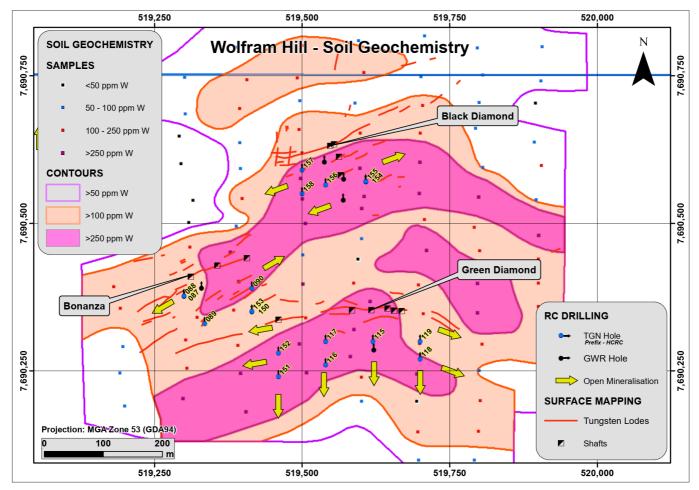


Figure 11. Tungsten soil sampling anomalies at Wolfram Hill.

ENDS-

For further information: Teck Wong Chief Executive Officer Ph: +61 8 9486 8492 E: teck@tungstenmining.com

Gary Lyons Chairman Ph: +61 8 9486 8492 E: gary@garylyons.com.au

This ASX announcement was authorised for release by the board of Tungsten Mining NL.

Competent Person's Statement

The information in this report that relates to Exploration Results and Data Quality is based on, and fairly represents, information and supporting documentation prepared by Peter Bleakley, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Bleakley is a full-time employee of the company. Mr Bleakley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bleakley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

About Tungsten Mining

Australian tungsten developer, Tungsten Mining NL is an Australian based resources company listed on the Australian Securities Exchange. The Company's prime focus is the exploration and development of tungsten projects in Australia.

Tungsten (chemical symbol W), occurs naturally on Earth, not in its pure form but as a constituent of other minerals, only two of which support commercial extraction and processing - wolframite ((Fe, Mn) WO_4) and scheelite (CaWO₄).

Tungsten has the highest melting point of all elements except carbon – around 3400°C giving it excellent high temperature mechanical properties and the lowest expansion coefficient of all metals. Tungsten is a metal of considerable strategic importance, essential to modern industrial development (across aerospace and defence, electronics, automotive, extractive and construction sectors) with uses in cemented carbides, high-speed steels and super alloys, tungsten mill products and chemicals.

Through exploration and acquisition, the Company has established a globally significant tungsten resource inventory in its portfolio of advanced mineral projects across Australia. This provides the platform for the Company to become a major player within the global primary tungsten market through the development of low-cost tungsten concentrate production.

Appendix 1 Intersections greater than 2 metres at 0.05% WO₃

	Hato	hes Creek 2024	Drilling -	Significan	t Tungsten Min	eralisation	(>2m at 0.0	5% WO₃ cut o	off)	
		MGA Coordii	nates				Inters	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Cu (%)
	<u> </u>	<u> </u>			Hit or Miss				<u> </u>	
HCRC064	519,440	7,685,629	462	185	-60/090	5	8	3	0.09	0.03
HCRC064						18	21	3	0.07	0.02
HCRC064						64	66	2	0.10	0.09
HCRC064						87	92	5	0.06	0.03
HCRC064						146	154	8	0.19	0.50
HCRC064						157	174	17	0.16	0.68
HCRC065	519,400	7,685,633	458	100	-70/180	8	12	4	0.06	0.02
HCRC065						30	32	2	0.12	0.08
HCRC066	519,400	7,685,633	458	80	-50/090	4	7	3	0.07	0.02
HCRC066				1		18	20	2	0.15	0.04
HCRC066				1		25	27	2	0.18	0.35
HCRC066						47	49	2	0.11	0.53
HCRC067	519,457	7,685,578	452	100	-60/090	25	32	7	0.38	0.19
HCRC067					Including	30	31	1	1.31	0.24
HCRC067						45	49	4	0.18	0.14
HCRC068	519,317	7,685,638	449	120	-60/180	28	30	2	0.07	0.07
HCRC068						45	48	3	0.07	0.05
HCRC068						63	67	4	0.16	0.19
HCRC069	519,612	7,685,501	437	100	-60/090		No Si	gnificant Inte	ersections	
HCRC070	519,583	7,685,500	441	100	-60/090	59	61	2	1.26	0.02
HCRC070					Including	59	60	1	2.44	0.02
HCRC070						67	69	2	0.10	0.02
HCRC071	519,541	7,685,499	442	100	-60/090	29	32	3	1.14	0.10
HCRC071					Including	29	31	2	1.68	0.13
HCRC071						39	44	5	0.10	0.04
HCRC071						47	49	2	0.06	0.03
HCRC071				1		68	69	1	1.44	0.01
HCRC072	519,498	7,685,503	442	100	-60/090	20	22	2	0.06	0.08
HCRC072				1		81	83	2	0.25	0.01
HCRC072				1		84	90	6	0.08	0.07
HCRC072				1		94	95	1	0.52	0.19
HCRC073	519,460	7,685,498	443	100	-60/090	3	13	10	0.08	0.11
HCRC073						73	75	2	0.07	0.01
HCRC074	519,666	7,685,580	433	100	-60/090	89	93	4	0.10	0.21
HCRC075	519,616	7,685,583	432	36	-58/094	8	10	2	0.12	0.04
HCRC075						22	23	1	0.60	0.11
HCRC076	519,577	7,685,577	432	100	-60/090	0	2	2	0.08	0.06
HCRC076						20	25	5	0.19	0.15
HCRC076						28	30	2	0.78	0.08

	Hato	hes Creek 2024	Drilling	Significan	t Tungsten Min	eralisation	(>2m at 0.0	5% WO₃ cut c	off)		
		MGA Coordii	nates				Intersections				
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Cu (%)	
HCRC076	. ,	. ,	. ,	. ,		34	35	1	0.59	0.87	
HCRC076						49	51	2	0.58	1.15	
HCRC076					Including	49	50	1	1.10	1.51	
HCRC076						76	82	6	0.32	0.15	
HCRC076					Including	78	79	1	1.48	0.12	
HCRC076						97	99	2	0.07	0.24	
HCRC077	519,741	7,685,743	441	100	-60/090	11	14	3	0.94	0.09	
HCRC077					Including	11	12	1	2.67	0.15	
HCRC077						34	39	5	0.94	0.23	
HCRC077					Including	34	35	1	4.31	0.30	
HCRC078	519,700	7,685,739	438	100	-60/090	1	18	17	0.43	0.03	
HCRC078					Including	3	4	1	1.59	0.04	
HCRC078					Including	5	6	1	3.91	0.08	
HCRC078						42	44	2	0.08	0.02	
HCRC078						70	74	4	0.25	0.19	
HCRC079	519,502	7,685,581	447	100	-60/090	12	17	5	0.44	0.04	
HCRC079					Including	15	16	1	1.93	0.09	
HCRC079						54	57	3	0.27	0.91	
HCRC079						61	64	3	0.14	0.02	
HCRC079						94	99	5	0.70	0.02	
HCRC079					Including	96	97	1	1.37	0.02	
HCRC079					Including	98	99	1	1.79	0.02	
HCRC080	519,541	7,685,575	438	100	-60/090	4	5	1	0.72	0.05	
HCRC080						22	28	6	0.08	0.03	
HCRC080						54	55	1	0.84	0.02	
HCRC080						58	63	5	0.08	0.01	
HCRC080						77	82	5	0.26	0.06	
HCRC081	519,606	7,685,583	431	100	-60/090	8	13	5	0.39	0.13	
HCRC081					Including	12	13	1	1.03	0.37	
HCRC081						20	24	4	0.12	3.88	
HCRC081						42	43	1	0.75	1.29	
HCRC081						45	52	7	0.11	0.22	
HCRC081						60	62	2	0.53	0.51	
HCRC081						67	70	3	0.36	0.23	
HCRC081						93	95	2	0.27	0.28	
HCRC091	519,449	7,685,879	435	100	-60/090	52	54	2	0.37	0.01	
HCRC091						61	62	1	0.60	0.18	
HCRC091						65	67	2	0.15	0.05	
HCRC091						70	79	9	0.53	0.01	
HCRC091					Including	71	72	1	2.32	0.01	
HCRC091						86	92	6	0.28	0.02	
HCRC091					Including	96	97	1	1.21	0.53	
HCRC091						96	97	1	1.21	0.53	

	Hato	hes Creek 2024	Drilling -	Significan	t Tungsten Min	eralisation	(>2m at 0.0	5% WO₃ cut o	off)	
		MGA Coordi	nates				Inters	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Cu
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(%)
HCRC092	519,581	7,685,961	454	100	-60/090	28	42	14	0.12	0.13
HCRC092						47	49	2	0.07	0.37
HCRC092						71	73	2	0.11	0.02
HCRC093	519,541	7,685,963	455	100	-59/090	82	84	2	0.07	0.01
HCRC094	519,498	7,685,961	452	100	-59/090		No Si	gnificant Inte	rsections	
HCRC095	519,462	7,685,959	444	100	-60/090		No Si	gnificant Inte	rsections	
HCRC096	519,560	7,685,882	452	100	-89/251	6	15	9	0.35	0.05
HCRC096					Including	11	13	2	1.29	0.08
HCRC096						18	36	18	0.11	0.10
HCRC096						47	54	7	0.09	0.51
HCRC096						58	60	2	0.08	0.09
HCRC096						63	65	2	0.39	0.14
HCRC096						72	75	3	0.42	0.16
HCRC096						82	84	2	0.26	0.93
HCRC096						93	97	4	0.20	0.09
HCRC097	519,663	7,685,964	438	100	-59/090	2	22	20	0.09	0.03
HCRC097						25	31	6	0.11	0.30
HCRC098	519,677	7,686,038	442	100	-60/090	24	30	6	0.18	0.03
HCRC098						54	60	6	0.08	0.67
HCRC098						96	98	2	0.19	0.01
HCRC099	519,648	7,686,043	438	100	-60/090	48	50	2	0.05	0.02
HCRC099						65	67	2	0.06	0.03
HCRC099						71	73	2	0.06	0.19
HCRC099						80	82	2	0.22	4.66
HCRC100	519,601	7,686,036	443	100	-59/090	41	47	6	0.08	0.01
HCRC101	519,563	7,686,036	446	100	-60/090	95	100	5	0.18	0.02
HCRC102	519,521	7,686,042	449	100	-60/090	51	53	2	1.00	0.01
HCRC102					Including	52	53	1	1.15	0.01
HCRC103	519,478	7,686,033	443	100	-59.4/090		No Si	gnificant Inte	rsections	
HCRC104	519,619	7,685,964	446	100	-60/090	9	14	5	0.07	0.04
HCRC104						18	28	10	0.07	0.02
HCRC104						49	53	4	0.07	0.08
HCRC104						97	99	2	0.42	0.94
HCRC105	519,666	7,685,745	430	100	-60/090	16	22	6	0.08	0.42
HCRC105				1		29	36	7	0.11	1.36
HCRC106	519,502	7,685,876	437	100	-89/216	11	14	3	0.08	0.04
HCRC106						38	42	4	0.19	0.01
HCRC106						61	62	1	0.53	0.02
HCRC107	519,999	7,685,446	419	66	-90/104	0	5	5	0.19	0.04
		. , -	-	I	Treasure					
HCRC082	519,842	7,686,964	429	120	-60/090	8	17	9	0.31	0.09
HCRC082	, ,	. ,	-		Including	10	11	1	1.33	0.08
HCRC082				<u> </u>	J	21	28	7	0.06	0.20
				1				-	*	

	Hato	hes Creek 2024	Drilling ·	Significan	t Tungsten Min	eralisation	(>2m at 0.0	5% WO₃ cut o	ff)	
		MGA Coordii	nates				Inters	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Cu (%)
HCRC082						49	51	2	0.11	0.06
HCRC082						55	64	9	0.15	0.62
HCRC082						68	70	2	0.06	0.08
HCRC083	519,806	7,686,956	429	150	-60/090	2	13	11	0.08	0.01
HCRC083						16	18	2	0.05	0.01
HCRC083						23	25	2	0.07	0.01
HCRC083						36	39	3	0.08	0.01
HCRC083						68	70	2	0.06	0.02
HCRC083						101	111	10	0.28	0.02
HCRC083						118	129	11	0.09	0.11
HCRC083						131	140	9	0.67	0.15
HCRC083					Including	131	132	1	4.49	0.21
HCRC083						143	148	5	0.13	0.04
HCRC084	519,825	7,687,037	437	44	-50/090	40	43	3	0.06	0.03
HCRC085	519,809	7,687,036	437	140	-60/090	71	76	5	2.05	0.01
HCRC085					Including	74	75	1	9.37	0.01
HCRC085						97	99	2	0.20	0.05
HCRC085						113	115	2	0.37	0.11
HCRC085						126	129	3	0.49	0.08
HCRC085					Including	126	127	1	1.09	0.16
HCRC086	519,796	7,686,997	427	170	-60/090	24	26	2	0.08	0.39
HCRC086						78	80	2	0.41	0.01
HCRC086						82	84	2	0.06	0.01
HCRC086						88	95	7	1.39	0.01
HCRC086					Including	88	89	1	9.09	0.01
HCRC086						114	117	3	0.89	0.01
HCRC086					Including	114	115	1	2.35	0.01
HCRC086						126	130	4	0.08	0.02
HCRC086						136	140	4	0.45	0.29
HCRC108	519,882	7,686,854	434	80	-60/090	6	24	18	0.21	0.06
HCRC108						28	33	5	0.18	0.13
HCRC108						48	50	2	0.13	0.02
HCRC108				1		53	63	10	0.13	0.22
HCRC108				1		71	78	7	0.16	0.25
HCRC109	519,861	7,686,879	425	6	-60/090	0	3	3	0.15	0.05
HCRC110	519,820	7,686,893	433	140	-60/090	38	43	5	0.19	0.14
HCRC110				1		61	64	3	0.21	0.22
HCRC110						79	81	2	0.15	0.11
HCRC110						84	97	13	0.16	0.07
HCRC110						103	118	15	0.44	0.18
HCRC110				1	Including	111	114	3	1.81	0.30
HCRC110				1		125	134	9	0.08	0.01
HCRC110						135	138	3	0.07	0.00

	Hato	hes Creek 2024	Drilling -	Significan	t Tungsten Min	eralisation	(>2m at 0.0	5% WO₃ cut o	ff)	
		MGA Coordi	nates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Cu
	(m) 519,858	(m) 7,686,881	(m) 425	(m) 100	Azim -59/067	(m) 14	(m) 26	(m) 12	(%) 0.19	(%) 0.08
HCRC111 HCRC111	519,000	7,000,001	420	100	-59/067	37	20 49	12	0.19	0.08
HCRC111						75	49 77	12 2	0.08	0.00
HCRC111					Including	75	76		1.19	0.00
HCRC111					mendaning	94	97	3	0.24	0.08
HCRC112	519,852	7,686,937	438	100	-50/090	24	27	3	0.17	0.04
HCRC112	010,002	1,000,001	100	100	00/000	47	48	1	0.84	2.27
HCRC113	519,819	7,686,920	441	64	-50/090	34	37	3	0.06	0.01
HCRC114	519,823	7,686,920	441	128	-60/090	26	29	3	0.08	0.02
HCRC114	0.0,020	.,				43	45	2	0.07	0.04
HCRC114						94	96	2	0.09	0.06
HCRC114						118	122	4	0.20	0.04
HCRC114						125	128	3	0.06	0.06
HCRC082	519,842	7,686,964	429	120	-60/090	8	17	9	0.31	0.09
HCRC082		.,			Including	10	11	1	1.33	0.08
HCRC082					J	21	28	7	0.06	0.20
				Gi	reen Diamond					
HCRC115	519,620	7,690,296	414	100	-50/000	0	6	6	0.09	0.09
HCRC115	,					24	26	2	1.33	0.12
HCRC115						44	46	2	1.84	0.62
HCRC115					Including	44	45	1	3.12	0.81
HCRC115						54	59	5	0.19	0.10
HCRC115						72	79	7	0.10	0.14
HCRC116	519,537	7,690,270	420	150	-59/000	0	37	37	0.14	0.30
HCRC116						41	43	2	0.13	0.05
HCRC116						53	58	5	0.13	0.15
HCRC116						80	84	4	1.13	0.02
HCRC116					Including	80	82	2	2.14	0.02
HCRC116						95	99	4	0.13	0.11
HCRC116						131	133	2	0.09	0.08
HCRC117	519,537	7,690,298	425	100	-59/000	0	20	20	0.10	0.31
HCRC117						23	25	2	0.06	0.36
HCRC117						31	34	3	0.07	0.15
HCRC117						41	43	2	0.14	0.13
HCRC117						65	67	2	0.64	0.01
HCRC117					Including	65	66	1	1.09	0.01
HCRC117						77	79	2	0.55	0.07
HCRC118	519,698	7,690,271	412	120	-59/000	2	10	8	0.09	0.07
HCRC118						51	57	6	0.12	0.15
HCRC118						80	84	4	0.10	0.11
HCRC119	519,699	7,690,296	413	84	-60/000	3	11	8	0.08	0.31
HCRC119						33	35	2	0.34	0.37
HCRC119						47	51	4	0.08	0.12

	Hato	hes Creek 2024	Drilling -	Significan	t Tungsten Min	eralisation	(>2m at 0.0	5% WO₃ cut o	off)	
		MGA Coordii	nates				Inters	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Cu
HCRC119	(m)	(m)	(m)	(m)	Azim	(m) 54	(m) 57	(m) 3	(%) 0.08	(%) 0.16
HCRC119						60	62	2	0.08	0.10
HCRC119						68	69	1	0.09	0.10
HCRC151	519,459	7,690,239	422	160	-60/000	0	26	26	0.00 0.12	0.10
HCRC151	010,100	1,000,200	122	100	00/000	88	90	2	0.67	0.02
HCRC151					Including	89	90	-	1.16	0.02
HCRC151					j	93	97	4	0.54	0.01
HCRC151					Including	94	95	1	1.22	0.01
HCRC151						126	129	3	0.25	0.01
HCRC152	519,463	7,690,283	430	120	-60/000	0	19	19	0.11	0.40
HCRC152						22	28	6	0.12	0.49
HCRC152						54	58	4	1.45	0.16
HCRC152					Including	55	56	1	5.54	0.20
HCRC152						84	87	3	0.52	0.20
HCRC152					Including	84	85	1	1.37	0.38
HCRC152						92	94	2	0.34	0.01
HCRC152						99	102	3	0.34	0.06
HCRC152						116	117	1	0.63	0.01
HCRC115	519,620	7,690,296	414	100	-50/000	0	6	6	0.09	0.09
				В	lack Diamond					
HCRC154	519,608	7,690,562	424	140	-70/000	0	14	14	0.14	0.08
HCRC154						16	19	3	0.06	0.10
HCRC154						53	56	3	0.28	0.10
HCRC155	519,608	7,690,563	424	140	-50/000	0	10	10	0.10	0.03
HCRC155						13	15	2	0.06	0.02
HCRC155						22	24	2	0.26	0.07
HCRC155						45	48	3	0.27	0.00
HCRC155						81	84	3	0.08	0.05
HCRC155						104	107	3	0.81	0.07
HCRC155					Including	105	106	1	2.26	0.09
HCRC155	540 540	7 000 505	404	110	60/000	122	124	2	0.18	0.01
HCRC156	519,540	7,690,565	431	110	-60/000	0	15	15	0.12	0.08
HCRC156 HCRC156						20	28	8 3	0.13 0.19	0.02
HCRC156 HCRC156						32 44	35 46	3	0.19	0.06
HCRC156 HCRC156						44	46 50	2	0.23	0.00
HCRC156 HCRC157	519,505	7,690,580	429	80	-60/000	49 0	10	10	0.71	0.01
HCRC157 HCRC157	519,505	1,090,000	429	00	-00/000	12	20	10 8	0.10	0.05
HCRC157 HCRC157						23	20 29	6 6	0.12	0.00
HCRC157 HCRC157					Including	23	29	1	1.00	0.07
HCRC157 HCRC157					menuumy	37	43	6	0.07	0.11
HCRC157 HCRC157						48	43 50	2	0.07	0.01
HCRC157	519,495	7,690,549	428	110	-60/000	40 0	9	9	0.00 0.15	0.00
1000100	019,490	1,090,049	420	110	-00/000	U	3	3	0.10	0.07

		hes Creek 2024 MGA Coordi		J				sections	,	
Hole No	No utbio o			Dawth	Din/				14/0	0
HOIE NO	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Cu (%)
HCRC158	()	()	()	(,	,	12	15	3	0.38	0.04
HCRC158						35	42	7	0.22	0.16
HCRC158						50	54	4	0.59	0.0
HCRC158					Including	53	54	1	1.90	0.01
					Bonanza					
HCRC087	519,304	7,690,378	456	120	-75/000	0	7	7	0.13	0.00
HCRC087	,	.,				32	40	8	0.82	0.0
HCRC087					Including	34	35	1	6.13	0.02
HCRC087						42	44	2	0.06	0.0
HCRC087						48	50	2	0.07	0.0
HCRC087						58	61	3	0.06	0.0
HCRC087						71	74	3	0.15	0.02
HCRC088	519,304	7,690,379	456	80	-50/000	0	2	2	0.18	0.0
HCRC088	0.0,001	.,,	100			6	8	2	0.06	0.00
HCRC088						19	25	6	0.80	0.0
HCRC088					Including	21	22	1	3.92	0.0
HCRC088					including	29	31	2	0.12	0.00
HCRC088						49	55	6	0.60	0.02
HCRC088					Including	50	51	1	3.34	0.0
HCRC089	519,337	7,690,325	453	170	-60/000	22	27	5	0.06	0.0
HCRC089	010,001	1,000,020	100		00/000	42	46	4	0.20	0.02
HCRC089						57	63	6	0.28	0.1
HCRC089					Including	57	58	1	1.20	0.0
HCRC089					including	83	85	2	1.01	0.04
HCRC089					Including	83	84	1	1.79	0.04
HCRC089					including	96	98	2	1.12	0.1
HCRC089					Including	97	98	1	1.82	0.02
HCRC089					including	109	114	5	1.51	0.20
HCRC089					Including	111	112	1	7.18	0.18
HCRC089					including	149	159	10	0.11	0.02
HCRC090	519,416	7,690,388	455	120	-50/000	0	11	10	0.11	0.0
HCRC090	010,110	.,000,000	100	120		29	31	2	0.07	0.0
HCRC090						52	61	9	0.06	0.0
HCRC090						75	77	2	0.00	0.0
HCRC150	519,413	7,690,346	452	10	-50/000	2	10	8	0.07	0.0
HCRC153	519,413	7,690,346	452	160	-50/000	4	13	9	0.12	0.00
HCRC153	010,712	7,000,0-0	702	100	-00/000	21	23	9 2	1.03	0.0
HCRC153					Including	21	23	1	1.96	0.0
HCRC153					including	33	39	6	0.06	0.0
HCRC153								4	0.00	0.0
HCRC153						44 51	40 56	4 5	0.20	0.0
				1		51	50	5	0.12	0.0

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade 0.05% WO₃ with up to 2m of interval waste, no top cut grade. Grid coordinates are MGA Zone 50.

Appendix 2 - JORC Code Reporting Criteria

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The latest drilling campaign completed by Tungsten Mining NL ("TGN") was sampled using Reverse Circulation (RC) drilling conducted from 31 August to 6 October 2024.
		A total of 65 RC drillholes (6803m) were drilled in the latest campaign and the majority of the holes were drilled at approximately $35^{0} - 60^{0}$ to stratigraphy and mineralisation.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	TGN drillhole collar locations were picked up by a licenced surveyor using a Leica GS18 RTK survey equipment with specifications of $+/-20mm$ N,E and Z.
		Downhole surveying was measured by the drill contractors. DDH1 used a Axis North Seeking Multi-Shot gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.
		Remote Drilling Services used a DeviGyro RG40 gyroscopic system in the drill rods. Accuracy is $\pm 0.5^{\circ}$ for azimuth and $\pm 0.1^{\circ}$ for inclination.
		Certified standards were inserted into the sample sequences in according to TGN QAQC procedures. Duplicate samples were collected to check repeatability of sampling and variability or nugget effect for mineralisation. Results from this QAQC sampling were considered good.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	The RC drilling crew collected 1 metre intervals from the cyclone and the sample was split using a cone splitter to produce two representative 2 – 4 kilogram samples in calico bags.
		The cone splitter was cleaned by hosing with pressurised air to eliminate sample contamination. One of the calico samples is for analysis and the second duplicate sample is retained as a reference sample for possible reanalysing / QAQC activities.
		The bulk reject material was collected at 1 m intervals from the cyclone and placed on the ground for geological logging. Samples from the current drilling programme were submitted to Nagrom the Mineral Processors, Kelmscott, WA, for a standard XRF Tungsten Suite.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	TGN completed 65 RC drillholes with depths ranging from 6 to 185 m, averaging 105 m. RC drilling used a face-sampling hammer that produced a nominal 140 mm diameter hole.
		TGN RC holes were surveyed in-rods at 30 m intervals by the drill contractors. DDH1 used a Axis North Seeking Multi-Shot gyroscopic system. Remote Drilling Services used a DeviGyro RG40 gyroscopic system in the drill rods
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC and diamond recovery was visually assessed, recorded on drill logs and considered to be acceptable.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	RC samples collected by TGN were visually checked for recovery, moisture and contamination. A cyclone and cone splitter were used to provide a uniform sample and these were routinely cleaned. The drill contractor blew out the hole at the beginning of each drill rod to remove excess water and maintain dry samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Ground conditions for RC drilling were good and drilling returned consistent size samples. All of RC samples were dry and contamination would be minimal. No significant bias is expected, and any potential bias is not considered material at this stage.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	TGN uses specially designed drill logs for tungsten mineralisation to capture the geological data. During logging, part of the RC sample is washed, logged and placed into chip trays. The washed chip trays are stored in sea containers on site. All drill data is digitally captured and stored in a central database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC chip logging included records of lithology, mineralogy, textures, oxidation state and colour. Key minerals associated with tungsten mineralisation and veining are recorded.
	The total length and percentage of the relevant intersections logged	All TGN drill holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No drill core collected during the current drill program.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	TGN RC samples were collected on the rig by a cyclone. Material was split by a cone splitter immediately beneath the cyclone to produce two 2 - 4 kg samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples from the current drilling programme were submitted to Nagrom the Mineral Processors, Kelmscott, WA and dried, split if over 2.5 kg and pulverised to 80% passing 75μ m.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	TGN's QAQC procedures included the insertion of field duplicates, blanks and commercial standards. Duplicates and standards were inserted at intervals of one in 25 and blanks at intervals of one in 50. Geological logging was used to ensure duplicate samples were from mineralised intervals.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	TGN inserted 1 in 25 RC field duplicates taken from 1 m cone split samples at the rig. Repeatability in RC duplicate samples was found to be excellent with an R^2 of 0.97 for tungsten and 0.98 for copper.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Assays from duplicate samples repeated well with no systematic bias for tungsten and copper. The larger sample size of approximately 40 kg per metre collected by RC drilling is considered more appropriate than small diameter diamond holes and therefore sample sizes are considered to be acceptable to accurately represent the tungsten, and copper mineralisation present at Hatches Creek.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	TGN assays samples for a tungsten suite by XRF. XRF has proven to be a very accurate analytical technique for a wide range of base metals, trace elements and major constituents found in rocks and mineral materials. Glass fusion XRF is utilised for assaying, since it provides good accuracy and precision; it is suitable for analysis from very low levels up to very high levels.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld magnetic susceptibility meter (KT-10) was used to measure magnetic susceptibility for 13 holes at Hit or Miss. Data is stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Field QAQC procedures for TGN sampling included the insertion of commercial standards, blanks and duplicates at the rate of one in 25 samples. Assay results have demonstrated acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have verified intersections in drilling. TGN personnel have conducted a review of all assaying by visual inspection of standards, blanks and duplicates for RC drilling against the drill database.

Criteria	JORC Code explanation	Commentary
	The use of twinned holes.	TGN re-drilled and were within 5 metres of three failed RC holes. Twin holes intersected similar widths and grades for mineralisation. Individual high-grade intervals were however found to be variable or nuggety.
		Logging conducted by TGN takes place at the drilling site. Ruggedised computers are used to record the logging for RC samples.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	A set of standard Excel templates are used to capture the data. Data was validated on-site by the supervising geologist before being sent to Perth office. It was then loaded into Micromine and validated for logging codes, missing intervals, overlapping intervals, hole location and downhole surveying. Validated data is then loaded into a relational database for storage.
	Discuss any adjustment to assay data.	No adjustments were made, other than for values below the assay detection limit which have been entered as half of the detection limit.
Location of data points		TGN drillhole collar locations were picked up by a licenced surveyor using a Leica GS18 RTK survey equipment with specifications of +/- 20mm N,E and Z
	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Downhole surveying was measured by the drill contractors. DDH1 used a Axis North Seeking Multi-Shot gyroscopic system in the drill rods.
		Remote Drilling Services used a DeviGyro RG40 gyroscopic system.
	Specification of the grid system used.	Geocentric Datum of Australia 1994 (GDA94) - Zone 53.
	Quality and adequacy of topographic control.	High resolution aerial photography and digital elevation survey was flown by Ausurv Surveyors Pty Ltd in 2015 with expected height accuracy of +/- 0.2 m.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill spacing varies from a 40 to 80 metre section spacing with a 40 metre hole spacing.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill spacing at present is considered sufficient to determine target size.
	Whether sample compositing has been applied.	Only 1 metre drill samples were collected, and no sample compositing was undertaken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of drilling was designed to intersect mineralisation as close as possible to perpendicular to the strike of the dominant vein geometry and mineralised stratigraphy. Given the steep nature to quartz lodes (dips of 50° to 90°), drilling intersected mineralised structures at 40° - 75° .
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Structural data collected during geological mapping has confirmed that drill orientation did not introduce any bias regarding the dominant orientation of mineralised veining. A second relatively minor east-west strike vein set sub-paralleled drill azimuths at Hit of Miss.
Sample security	The measures taken to ensure sample security.	Samples collected by TGN were securely sealed and stored on site and delivered by courier to the laboratory in Perth. Sample submissions forms used to track samples were emailed directly to the laboratory.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Internal Company audits for both historical and current Company drilling are carried out to ensure drilling and sampling techniques are consistent with industry standards, consistency of data is validated by Tungsten Mining while loading into the database. Any data which fails the database constraints and cannot be loaded is returned for validation. Global consistency is audited by plotting sections using the database and reconciling assays. During drilling the Company inserts standards, duplicates and blanks into the sample stream. These QAQC samples are periodically reviewed and any issues addressed. Tungsten Mining also conducted a thorough review of historical data that included checking of assay results and checking drilling against historical reports. Any errors identified were corrected in the database.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The prospects are located in the Northern Territory on the granted exploration Licenses EL22912 covering an area of approximately 25.2 km ² .
		Territory Tungsten Pty Ltd (a wholly owned subsidiary of TGN) has a 100% interest of the Hatches Creek Tungsten Project including EL22912.
		The normal Northern Territory state royalties apply and a 1.5% net smelter royalty is payable to Davenport Resources Limited.
		The tenements are located on Aboriginal Freehold Land, which is owned by the Anurrete Aboriginal Trust and administered by the Central Land Council, with whom a Deed of Exploration has been executed.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing at the time of reporting.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous mining activities up to 1960 are well documented and summarised in Bulletin No 6 "The Geology and Mineral Resources of the Hatches Creek Wolfram Field, Northern Territory", G.R. Ryan 1961.
		Between 2008 and 2015, the ground was held by numerous companies associated with Devenport Resources Limited and Arunta Resources Limited. Their activities focused on sampling and mapping of historical workings.
		Between August 2016 and June 2019, the ground was held by the NT Tungsten Pty Ltd (a wholly owned subsidiary of GWR Group). The GWR Group completed the following:
		 Flew a detailed UAV survey, Completed estimation dump/stockpile volumes, Collected dump and rock chip sampling, Collection of 10 bulk samples for testwork, Three reverse circulation drilling programs (64 holes, 6,726 metres) testing targets at Hit or Miss, Treasure, Pioneer, Copper Show, Green Diamond, Black Diamond and Bonanza
		TGN have conducted a thorough review of all historical drilling and sampling procedures.

Geology

Tungsten mineralisation at Hatches Creek is associated with quartz veins in shear zones within a variety of Proterozoic host rocks forming part of the Davenport Province.

Hit or Miss

The Hit or Miss deposit lies in a sequence of interbedded siltstones, sandstones, quartzite and felsic volcanic rocks striking at about 070° and dipping at $55-60^\circ$ to the south.

Most of the mineralised structures lie in the porphyritic felsic volcanics which overlie the sedimentary sequence. Quartz reefs form three dominant trends as follows:

- On the western side of Hit or Miss quartz reefs dip at 75–80° toward the west (280°)
- On the eastern side of Hit or Miss quartz reefs dip at 65–75° toward the west northwest (300– 310°)
- Crosscutting the Hit or Miss deposit are several roughly east-west striking quartz reefs that dip steeply (85°) towards the north (350°).

Treasure

At Treasure, tungsten mineralisation forms continuous lodes which can be traced from the north to south of the prospect. The lodes occupy shears hosted by felsic to intermediate volcanic rocks and strike within 20° of north and dip steeply towards the west.

The high-grade northern (Treasure) and southern (Hidden Treasure) sections of Treasure are separated by relatively weak mineralisation associated with a quartzite unit (20 - 30 metre thick) in the central portion of the prospect. Wolframite is the dominate tungsten mineral, with no scheelite recognised, and only traces of copper, bismuth, and lead.

Deposit type, geological setting and style of mineralisation.

Green Diamond

The Green Diamond group consists of an almost continuous line of historic workings extending over 450 metres. Mineralisation is hosted by massive well-sorted quartz sandstone which dips steeply towards the south. Mineralisation is parallel to the bedding with individual lodes commonly bifurcating and variable geometry.

The Green Diamond Main Lode is more heavily mineralised than the adjoining lodes. The Main Lode consists of a series of quartz veins and splays within a $1 \cdot 2$ metre shear that dip at 45-60° towards the south. Wolfram is the dominant tungsten mineral accompanied by varying amounts of scheelite and copper.

Concentrates from Green Diamond assayed as high as 7.63% Bi and 2.03% Cu derived chiefly from azurite, malachite, and bismutite. Bismuthinite, cuprite, and native copper have also been identified in the oxidized zone. Bornite, chalcocite, covellite pyrite, bismuthinite, and chalcopyrite are present when fresh.

TGN drilling in 2024 intersected narrow high-grade zones associated with mineralisation target by historic working. Drilling also intersected a second style of mineralisation associated with the Pedlar Gabbro/sediment contact. This style consisted of broad zones of low to medium grade tungsten-copper mineralisation hosted by weathered mafics and sediments that dip shallowly (25 - 40°) towards the south.

Black Diamond

The Black Diamond group consists of three lodes and several parallel quartz reefs that outcrop over about 250 metres. The Main Lode is the most important producing the most wolframite.

The lodes are hosted by sandstone, quartzite, greywacke, and siltstone, strike at about 060° and dip to the south at 60-80°. Tungsten is associated with dominantly wolframite and minor amounts of scheelite, bismutite, and malachite.

Drilling intersected fine-grained sediments and two 10 - 20 metre thick mafic intrusive units that dip shallowly towards the

Criteria	JORC Code explanation	Commentary
		south. Stronger tungsten mineralisation was intersected in sediments adjacent to or within the mafic units over a strike length of 200 metres.
		Bonanza The Bonanza Group is situated about 100 metres south-west of the Black Diamond Mine and about 50 – 100 metres north of the western end of the Green Diamond Group.
		The group extends over 230 metres in a north-north-easterly direction and consists of a number of lodes striking at about 060°, of which the Bonanza Lode is the most important. Mineralisation is hosted by quartz sandstone and greywacke and is dominantly wolframite with minor scheelite, copper and bismuth minerals.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Collar data for drilling is included in Appendix A.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All intersections greater than 2m at 0.05% WO ₃ using a lower cut-off grade 0.05% WO ₃ , no top cut grade and up to 2m of internal waste are reported in Appendix 1.
		High-grade intervals of better than 1m at 0.50% WO_3 are also reported in Appendix 1.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	For reporting of tungsten intersections, all assays >1.0% WO ₃ are reported beneath the relevant intersection. Interval zones of waste up to 2m wide are included in intersections provided the adjacent zone and waste are >0.05% WO ₃ .
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, no metal equivalents were quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 Hit or Miss - holes will intersect mineralisation at between 35° - 55° and true thickness will be between 65 to 75% of the intersection thickness. Treasure - holes will intersect mineralisation at 25° to 50° and true thickness will be approximately 60% to 70% of the intersection thickness. Green Diamond - holes will intersect tungsten mineralisation at 60° - 90° and true thickness will be approximately 70% to 100% of the intersection thickness. Black Diamond - holes will intersect tungsten mineralisation at 40° - 65° and true thickness will be approximately 60% to 80% of the intersection thickness.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Intersections greater than $2m$ at $0.05 WO_3$ for the current drill program are reported and holes with no significant mineralisation are documented in Appendix 1.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data		Metallurgical studies to date have demonstrated the amenability of ore from Hatches Creek to gravity separation and magnetic separation, effective at concentrating the material to 50% WO3.
		Gravity testwork has predominantly comprised table testwork, at a series of size fractions and jigging testwork, to assess and evaluate coarse concentration of this material.
		Testwork has largely been positive, with further work underway to establish liberation thresholds and evaluate the optimum size range in which this material should be concentrated.
	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Recent dense media separation testwork has also proved effective at concentrating material at coarse particles size distributions. Magnetic separation has also proven effective at recovering wolframite, a para-magnetic tungsten mineral, however further work is underway to improve selectivity in this process and subsequent concentration.
		Testwork has also demonstrated the efficacy of ore sorting when applied to material from Hatches Creek. Given the nature of the mineralisation, the wolframite / scheelite is generally isolated to specific rock types and ore bearing material is quite easily distinguished from non-ore bearing material resulting in significant rejection of barren material and high overall tungsten recoveries.
		Collectively, ore sorting, in conjunction with gravity and magnetic separation has underpinned flowsheet development, and testwork has centred upon bulk testing and optimisation of these processes.
		Mineralogy testwork is also underway to validate the nature of the tungsten and copper species in varying ore bodies.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 The company intends to continue refining and optimising a flowsheet, commence development of a resource model in-lieu of the reported drilling and continue associated option studies and subsequent feasibility studies for the project. This is expected to include - Resource interpretation and development of a suitable resource model. Pit optimisations, mine scheduling and preliminary mine design, geotechnical studies and definition of ore reserves. Continued metallurgical testwork on the material from the varying Hatches Creek deposits Process optioneering, design and engineering for the tungsten processing plant and associated non-process infrastructure. Feasibility assessment of the project, in-lieu of the resource and proposed flowsheet. Continued progress for the environmental and regulatory approvals.